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Statistics of the motion of passively convected point particles in turbulent flows are studied. The database
used is obtained by direct numerical solution of the Navier-Stokes equation. We estimate the probability
distribution of the transit times of such particles through reference volumes with given forms and sizes. A
selected position within the reference volume is moving with the local flow velocity, thus determining the
motion of the entire surface. The transit time is defined as the interval between entrance and exit times of
surrounding particles convected through the volume by the turbulent motions. Spherical as well as hemispheri-
cal surfaces are studied. Scale sizes in the inertial as well as in the viscous subranges of the turbulence are
considered. Simple, and seemingly universal, scaling laws are obtained for the probability density of the transit
times in terms of the basic properties of the turbulent flow and the geometry. In the present formulation, the
results of the analysis are relevant for chemical reactions, but also for understanding details of the feeding rate
of micro-organisms in turbulent waters, for instance.
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I. INTRODUCTION

One of the basic problems associated with dispersal of
particles by turbulent flows concerns the relative separation
of two particles. In the present study, we consider a related
problem, by analyzing the transit time �or passage time �1��
of a particle through a reference volume moving with the
flow. We thus take a reference volume with constant shape
�for instance, a sphere�, and let a reference point associated
with the volume �the center of the sphere, for instance� be
moving with the local flow. The transit time is defined as the
interval between the entrance and first exit times of sur-
rounding particles passing through the reference volume. The
analysis is carried out by use of two large databases obtained
by numerical solutions of the Navier-Stokes equation �2,3�.
with parameters listed in Table I. We consider spherical and
also hemispherical reference volumes. Given the shape of the
reference volumes, the scaling laws found seem to have gen-
eral validity.

The relevance of this problem, for instance, for chemical
reactions has been pointed out elsewhere �1�. We find an-
other interesting application of the present problem in noting
that turbulent mixing seem to be important for the feeding
processes of zoo plankton in the oceans �4�, where, in par-
ticular, models for the encounter rate in turbulent environ-
ments have been proposed before �5–7�. The transit time, as
defined in this study, is the time available for interaction
between the transiting particle and the reference particle. The
two particles can, for instance, represent prey and predator.
The interaction time defined before then represents the time
available for a small predator to capture its prey; this time is
an important parameter for modeling the process �8,9�. Also,
other relevant problems can be found �10�. Analytically solv-
able models for the problem have also been proposed �1�,
including results for the transit time probability densities.

We have analyzed parts of this problem previously �7,11�
by using data from a laboratory experiment, where turbu-
lence with reproducible parameters could be generated by

two moving grids �12�. The scatter in these results was sig-
nificant because of the uncertainties involved, the estimation
of the specific energy dissipation rate �, in particular. Also,
the range of variations in the sizes of the surfaces was lim-
ited. The present analysis is based on a turbulent velocity
field generated by direct integration of the Navier-Stokes
equation in a periodic box of size L=2�. The integration is
carried out by means of pseudospectral codes with resolu-
tions 5123 and 10243, respectively, for the two cases. Energy
is injected into the flow by keeping the total energy in each
of the two first wave number shells constant. The flow mo-
tions are damped by a second-order viscous dissipation term.
Passive tracer trajectories are obtained by integrating
dx�t� /dt=u�x�t� , t� with the velocity at the instantaneous par-
ticle positions, obtained by linear interpolation from the
nearest grid points. More details on the simulations can be
found on the site �21�. The relation between computational
and physical units was discussed elsewhere �13�. The num-
ber of full length particle trajectories available are 192
�103 and 384�103 for data set A and B, respectively. For

TABLE I. Simulation A �second column� lasts 1167 time steps
with dt=0.005, simulation B �third column� lasts 1841 time steps
with dt=0.0023. The Kolmogorov length scale is here � and the
specific energy dissipation is �, while �� is the Kolmogorov time
scale. The Reynolds number is Re�, while T is the duration of the
simulation in computational time units �3�.

dx 2� /512=0.012272 2� /1024=0.0061359

� 2.05�10−3 8.8�10−4

� 0.8853212 0.810878

E= 1
2 �u2� 3.01 2.96

Re� 183 286

� 0.00993=0.81 dx 0.0054=0.88 dx

�� 0.048 0.033

T 5.84 4.23
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the analysis, these trajectories are broken up into two shorter
segments. With the available numerical database, we can im-
prove the accuracy of previous estimates considerably and
also extend the parameter ranges to length scales shorter than
the Kolmogorov scale.

The complexity of the problem can be illustrated by Figs.
1 and 2 showing trajectories of selected point particles fol-
lowed in the simulations. In the case of a sphere fixed in the
Eulerian frame, the transit time can be obtained approxi-
mately by assigning all particles one characteristic velocity
determined by the largest energy containing eddies in the
system �11�. The same particles followed in the Lagrangian
frame of the reference particle give a much more compli-
cated presentation of the orbits, see Fig. 2. This latter case
corresponds to the problem addressed in the present work.
All trajectories refer to the same time interval �here 600 time
steps�, and their relative lengths are thus representative for an
average velocity associated with each of the corresponding

trajectories. The figures shown here are only illustrative: they
can appear very different from one realization to another.

Figures 1 and 2 allow a three-dimensional, stereoscopic
view by focusing the eyes approximately 20 cm behind the
plane of the paper or computer screen. It requires a little
exercise. In our experience, the distance to the eyes is not so
critical provided it is sufficiently large, but it is essential that
the figure is kept plane and horizontally aligned with the
observer’s eyes. A similar type of presentation of curves in
three dimensions was used in several presentations �14�,
where many examples are found.

II. NUMERICAL RESULTS FOR THE INERTIAL
SUBRANGE

In Fig. 3, we show the distribution of transit times to
spheres of different radii, covering the inertial as well as the
viscous subranges. These results are obtained by use of data
set B in Table I. We note a systematic variation, finding in
particular that the curves collapse �the curves fall on top of
each other� when the radii are smaller than a critical length
�0=��15CK separating the inertial and viscous subranges,
with CK�2.1 being the Kolmogorov constant. This critical
length �0 is approximately a factor 13 larger than the Kol-
mogorov length scale �15�. The characteristic length-scale �0
is obtained by identifying a transition length between the
structure functions for the inertial subrange, CK��r�2/3, and
the viscous subrange, r2�� /�� /15, respectively �16�. Equat-
ing the two structure functions, we obtain the crossover
length-scale �0 separating them �15�. For data set A, we have
�0�0.13, and for B, we have �0�0.07 in normalized com-
putational units. Structure functions obtained for the two
simulations are shown elsewhere �13,15�.

In the inertial subrange of the turbulence, where the effect
of viscosity � on the structure function is negligible, we ex-
pect that a universal scaling law should exist depending only
on t ,� and R. This scaling can be determined by dimensional
reasoning �7,17,18�. First, we consider the spherical case,
with a given radius R. We need a universal “time” for nor-

FIG. 1. Trajectories of selected point particles in the Eulerian or
rest frame. The particles are initially confined to a sphere of radius
R=0.2. The figure allows a three-dimensional, stereoscopic view.
Units on axes are in computational units. The heavy line shows the
reference particle. The figure is representative for R being in the
inertial subrange. For comparison, we have the scale size of the
largest energy containing eddies to be 	3 in the present computa-
tional units.

FIG. 2. Trajectories of the point particles in Fig. 1 now shown in
the Lagrangian or comoving frame for the particle in the center. The
reference particle is represented by a point in this comoving frame,
and therefore not noticeable.

FIG. 3. Transit time distribution as a function of computational
times for the spherical case, for radii R=0.025, 0.050, 0.075, 0.100,
0.175, 0.25, 0.50, 0.75, 1.00, and 1.50. The top curves to the
left correspond to the smallest R value, with increasing R
giving steadily decreasing functional values there. The results are
for the data set with Re�=286. Times are in computational units,
see Table I.
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malization, and with the parameters � and R being the only
dimensional parameters available, the only characteristic
time available is R2/3 /�1/3. In the inertial length interval, we
thus expect that the probability density for the occupation
times can be written in terms of a dimensionless temporal
variable as P�t�= �R2/3 /�1/3�PL�t�1/3 /R2/3�, assuming that � is
a deterministic constant being the same for all surfaces in a
given simulation. In reality, � is fluctuating around the aver-
age value, and the corrections due to these intermittency ef-
fects are ignored. We have PL to be a dimensionless function
of a dimensionless variable. The form of the function PL
cannot be determined by dimensional reasoning. It will de-
pend in particular on the shape of the reference volume.

In Fig. 4, we show results of the normalized transit time
distributions in terms of normalized times. Superposed on
this figure, we have the similar results for different parameter
values, as obtained by a laboratory experiment �11�. There
are no free fitting parameters for this comparison of results.
To obtain the results shown in Fig. 3, we follow 20�103

moving particles with their associated volumes in time. We
find very good agreement between the laboratory results and
those obtained in the present numerical analysis.

For large transit times, we find that the proposed scaling
laws are very well satisfied, while the agreement deteriorates
somewhat for smaller transit times. These shorter times are,
however, in general associated with “glancing” transitions,
where the length of the particle orbit between the entrance
and exit positions will often be much shorter than �0, and
therefore a scaling law derived for the inertial subrange is
unlikely to hold there. Another factor contributing to the un-
certainty is that transit times are measured in units of integer
sampling times �see caption of Table I�, which becomes
problematic for very small transit times. When the Reynolds
number is very large �i.e., much larger than achieved by the
present simulations�, the relative importance of these short
transit distances will become small and a better agreement
with the proposed scaling can be expected, although inter-
mittency effects may become noticeable in this limit. The
agreement between the results from simulations and labora-

tory experiment is fully satisfactory, indicating that the esti-
mation of the energy dissipation � was successful in that
experiment: this is in general difficult. In particular we argue
that this agreement demonstrates that the inertial subrange of
the turbulence was fully developed in that experiment �12�.
We find that the overall features �although not all details�
of the transit time probability density for spherical volumes
can be adequately represented by a Rayleigh distribution,
�x /	2�exp�− 1

2 �x /	�2�, with x
 t�1/3 /R2/3 and 	�1 /3. This
approximation can be useful for modeling.

III. NUMERICAL RESULTS FOR THE VISCOUS
SUBRANGE

The scaling laws for the viscous subrange are different
from those characterizing the inertial subrange. From Fig. 3,
we thus note that when R
�0 all curves seem to collapse.
The only normalizing quantity with dimension “time” being
independent of R is �� /�. In Fig. 5, we show the transit time
distribution as function of normalized time t�� /�, for a range
of R values, and the two values of the kinematic viscosity
available. For the smallest R values, we have relatively few
events contributing, and the signal-to-noise level is corre-
spondingly reduced. For this viscous subrange, we do not
have any laboratory experimental data points available. The
general agreement with the proposed scaling is just as good
in Fig. 5 as in Fig. 4.

IV. NONSPHERICAL VOLUMES

The general form of the scaling laws derived by dimen-
sional arguments is not restricted to spherical surfaces of
interception. The only assumption is, in fact, that the entire
volume changes self-similarly with a change in a character-
istic length scale. The scaling law should therefore apply
equally well to a hemisphere, for instance, but with a differ-
ent form of the function PL. In Fig. 6, we show results of
transit times for a hemisphere, where the radii are in the
inertial subrange for both data sets in Table I. Again we find
the scaling for the normalized temporal variable to be well
fulfilled, that is the curves for different R, �, and � collapse

FIG. 4. Normalized transit time distributions for the spherical
case with radii R=0.25, 0.5, 0.75, 1.0, and 1.5, all in the inertial
subrange for both data sets with Re�=183 and 286 given with
dashed and full lines, respectively. With gray circles, we also shown
normalized results obtained from a laboratory experiment �11�, for
six values of �, each analyzed for 4 radii in the inertial subrange. No
free parameters are involved in the comparison of numerical and
experimental results.

FIG. 5. Normalized transit time distributions for the spherical
case with radii R=0.025, 0.050, 0.075, and 0.100, all in the viscous
subrange. Results from both data sets are included here, and shown
with full and dashed lines. Diamonds give analytical results for
selected points using the simple model �2�.

TRANSIT TIMES IN TURBULENT FLOWS PHYSICAL REVIEW E 81, 046310 �2010�

046310-3



on each other. The orientation of the symmetry axes of the
hemispheres are randomly distributed with respect to the lo-
cal flow vector directions. If we consider the case of micro-
organisms following the flow, this assumption seems the
only one reasonable, since these organisms will have limited
means to detect the magnitude of the local flow velocity or
its direction. Also, more complicated surfaces of interception
can be relevant for the biological applications mentioned
�19�, but the hemispherical case discussed here has received
attention in several studies �20�.

In Fig. 7, we show results of transit times for a hemi-
sphere in terms of the normalized time t�� /�, where the radii
are in the viscous subrange, R
�0. We use both data sets,
thus having two different values of �. We find that the scal-
ing law is well satisfied also here. Again we find only few
simulation particles with separations smaller than 0.05, so
the curves for the smallest values of R have a noticeable
noise component. Superposed the curves from the data
analysis, we show analytical results by diamonds as in Fig. 5.

Comparing transit time distributions for spherical and
hemispherical volumes, we note that for the hemisphere the
probability of long transit times is reduced and thus short
time probabilities are increased. This follows naturally from
the reduction in volume available for accommodating the
trajectories.

V. SIMPLE SOLVABLE MODELS

Based on results from numerical flow simulations, we
have obtained estimates for the transit time distributions of
point particles moving with the flow. The analysis covers
parameter ranges where length scales for the surfaces are in
the inertial as well as the viscous subranges of the turbulence
�16�. Data from two independent numerical solutions of the
Navier-Stokes equation demonstrated a very good agreement
with the proposed scalings.

Transit time distributions were studied before �7,11� using
data from a laboratory experiment, although those studies
were restricted to the inertial subrange of the turbulence. For
comparison, we show also these experimental results in Fig.
4. We found a very good agreement, noting in particular that
there are no free parameters to fit. We were thereby also able
to make an independent test of the calibration of the esti-
mates of the average specific energy dissipation rate � in that
experiment �12�.

The independence of the transit time distribution of the
scale length R in the viscous range might appear surprising,
but the result can be illustrated by physically realizable local
flow models having precisely this property. For scales
smaller than the Kolmogorov length, we can argue that vis-
cosity will damp out all variations except locally linear
shears. For illustration, we therefore consider a simple linear
velocity shear profile U= ��z ,0 ,0� in the comoving frame of
reference. For those passages that give short transit times, we
expect this simple model to be adequate also physically.

The transit time distribution of a cube L�L�L, with
axes parallel to the x ,y ,z axes, is readily found as P�t�
=1 / ��t2� for t�1 /� and P�t�=0 otherwise. This result is
independent of the scale size of the box, here L, consistent
with our observations for the case where the scale sizes are
smaller than �0.

We can also obtain a simple analytical result for transit
times of a spherical surface for the previous simple linear
shear-flow profile. Consider particles propagating in the
x-direction, with the coordinates x ,y ,z being distributed on
the “back” surface of the sphere with radius R. We have R2

=x2+y2+z2. The transit time of a particle is t=2x /�z
= �2 /�z��R2−y2−z2. For a given time t, the locus of such
particles is then y2+ �1+ ��t /2�2�z2=R2. The flux of particles
at a position �x ,y ,z� is given by the product of a velocity �z
and a constant density, irrespective of x and y. The cumula-
tive distribution F�t� of transit times for given R is then
obtained as

F�t� = C12
0

R �R2−y2/�1+��t/2�2

�R2−y2

�zdzdy

= C1�
��t/2�2

1 + ��t/2�2
0

R

�R2 − y2�dy = C2
��t/2�2

1 + ��t/2�2 ,

�1�

with constants determined by the requirement F�t→�→1.
In particular, we find C2=1. The probability density P�t ���
for transit times in the present simple model with given � is
then found as

FIG. 6. Numerically obtained normalized transit time probabil-
ity densities for R in the inertial subrange and �=90°. See also Fig.
7. We have R=0.25, 0.5, 0.75, 1.0, and 1.5. Full and dashed lines
are for the two cases listed in Table I.

FIG. 7. Numerically obtained normalized transit time probabil-
ity densities for R in the viscous subrange and �=90°. Full and
dashed lines are for the two cases listed in Table I. We have R
=0.025, 0.05, 0.075, and 0.1. The curves with R=0.1 are the bottom
ones to the left/outer ones to the right. Diamonds give analytical
results for selected points using a simple shear-flow model.
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P�t��� =
dF�t�

dt
= �

�t/2
�1 + ��t/2�2�2 , �2�

which has its maximum for �t=2 /�3. As a consequence of
the assumed linear velocity shear, the result �2� is also inde-
pendent of the radius R of the reference sphere. The shear
parameter is directly related to the magnitude of the vorticity,
���=�, of the given shear flow. If the probability density of
� is known, we can obtain the transit time distribution for
R
�0. Being restricted to simple shear flows, the present
outline does not generally prove P to be independent of R
when R
�0, but it makes the observed result plausible.

It can have some interest to compare the analytical result
�2� with the numerically obtained transit time distribution.
For this purpose, we inserted selected values as indicated by
diamonds, �, in Fig. 5, where we fitted the maximum at
t�� /��2.25 to the maximum of Eq. �2�, which gives �
�2 / �2.25�3��� /��0.5�� /�. In the model �2�, we have �
entering as a free parameter, but we can approximate �2

����u�2�=�0
k2E�k�dk in terms of the velocity power spec-

trum E�k�. We have �=��0
k2E�k�dk implying �=�� /�,

which is within a factor 2 the result we found before. Given
the simplifying assumptions made to obtain this result for the
viscous subrange, we find the agreement to be good.

For spherical volumes with radii in the viscous subrange,
the present analysis supports a universal form for the transit
time probability density

P4��t� �
1

8

t�/�

�1 +
1

16
t2�/��2 , �3�

where the subscript 4� refers to the spherical surface.
The analytical result reproduces the numerically obtained

transit time distribution very well for most transit times, ex-
cept for the largest ones where we find the probability den-
sity to have a negative curvature, indicating that it falls off
exponentially rather than the power law t−3 given by Eq. �2�.
The simple analytical model studied here evidently applies
only for short transit times. Large transit times will in gen-
eral be associated with long convoluted trajectories that can-
not easily be modeled. This conclusion applies for R being in
the inertial as well as the viscous subranges. Even the simple
shear model studied before will become very complicated for
large transit times, where � can no longer be considered
constant in time. We find that using a Rayleigh model for the
probability density in the viscous range transit times we can
account for the variation observed at large times, and at the
same time also for the short time behavior of Eq. �3�.

Superposed the curves in Fig. 7, we show our analytical
results by diamonds as in Fig. 5. We use again the previous
simple shear-flow model, but let the reference volume be a
hemisphere with a symmetry axis being randomly distributed
with respect to the flow. The analysis becomes rather lengthy
for this problem, so we show here only the final result ob-
tained numerically, where we averaged over all angles be-
tween the local flow velocity vector and the symmetry axis
of the hemisphere, assuming these angles to be uniformly
distributed over 4�. When inserting the analytical result, we

use the same value for � as in Fig. 5, so there are no new
parameters introduced. Again we find a good agreement at
short transit times, while we again find indications of an
exponential fall-off at large transit times not accounted for by
the simple model. An important point is that the difference
between the transit time distributions for the spherical and
hemispherical reference volumes can be explained by this
simple model, i.e., in the spherical case we have for the
probability density the limit P4��t→0�=0, while for the
hemispherical case, we find P2��t→0��0, where the sub-
script specifies the opening angle of the cone defining the
volume. Also other shapes of the reference volume have
been analyzed. A simple analytical model is here found only
for the viscous subrange where the simple shear-flow U
= ��z ,0 ,0� is unaffected by the viscosity term ��2u in
Navier-Stokes equation. In the inertial subrange, the trajec-
tories will be strongly convoluted �see Fig. 2�, and the analy-
sis is significantly more complicated. Results for this inertial
subrange are, however, reported in the literature �1�. These
results are supported by numerical results based on a Lange-
vin equation. A nontrivial scatter at small transit times was
found, so the agreement with our numerical results for the
inertial subrange is not evident.

The normalizing time for the transit times can also be
argued on dimensional grounds by taking it to be the ratio of
the characteristic length R and a typical velocity estimated by
the root-mean-square of the second-order Eulerian structure
function, corresponding to the same length scale. For the
inertial subrange, this argument gives R / ��R�1/3=R2/3 /�1/3,
in agreement with the previous result. This normalizing time
R2/3 /�1/3 was argued also in the literature �1�, but as we see it
is the only one that can be made dimensionally correct with
the given set of parameters for the inertial subrange.

With the second-order structure function being r2�� /�� /15
in the viscous subrange �16�, the previous arguments give
�apart from a numerical constant� the characteristic time for
transit time normalizations as R /�R2� /�=�� /� as before, in-
dependent of R in this limit.

For R in the inertial as well as the viscous subrange, our
results favor a decay of the probability density faster than
any t−p for large transit times, for instance, an exponential
variation. Analytical results �1� seem to argue for a t−5/2 in
the transit time probability density for large times with R in
the inertial subrange. �This result implies that �tp� should not
exists for any p�3 /2.� As stated, our observations are in
variance with this result.

VI. CONCLUSIONS

We studied particle transit times through given reference
surfaces. The particles are assumed to be carried passively by
turbulent motions in the environment. We demonstrated the
applicability of some simple scaling laws for the probability
densities of the appropriate statistical distributions for the
inertial as well as the viscous subranges. We also illustrated
the relations between the present numerical results and exist-
ing laboratory studies of the same problem, obtaining a good
agreement for spherical surfaces.

The results summarized in the present work have rel-
evance for cases where interaction times are important. We
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already mentioned the relevance for micro-organisms in tur-
bulent environments, but relevance also for chemical reac-
tion rates have been noted �1�. Information concerning the
net rate of interactions needs the additional information of
the encounter rates �5,6�, which have been studied previ-
ously, experimentally as well as numerically �7,15�. This lat-
ter problem has relevance for several applications like those
mentioned.

We studied the Lagrangian version of the transit time
problem because only this is relevant for the applications
outlined here, but it has evidently also an Eulerian counter-
part �7,11�. For studies of aquatic micro-organisms, the Eu-
lerian problem has little relevance, but it can be interesting
for other cases. Since the particle trajectories are much
smoother in the Eulerian frame �see Fig. 1�, we expect that
simple models can be obtained for this case using a charac-
teristic velocity to be ��u2�, as argued elsewhere �7,11�.

Intermittency effects in the inertial as well as the viscous
subranges were, as already mentioned, not considered when
obtaining the scaling arguments by dimensional reasoning.

The good agreement with the proposed scaling seems to in-
dicate that intermittency effects have a minor role for the
present problem, at least for the Reynolds numbers in the
present simulations. Intermittency effects could be expected
to be particularly important for the smallest scales of the
analysis, but this was not observed. We expect that observa-
tion of intermittency effects in the present context requires
Reynolds numbers significantly exceeding those available
here.
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